
PRECISAZIONI IMPORTANTI SULLA DEFINIZIONE DEL CAMPO ELETTRICO

Prof. Danilo Saccoccioni

Ricordiamo che due grandezze si dicono direttamente proporzionali se il loro rapporto è costante al variare di esse. Ebbene, la legge di Coulomb applicata a due cariche Q e q (che chiameremo rispettivamente carica sorgente e carica di prova) attesta che la forza \overline{F} che che Q esercita su q è proporzionale a q, quindi il rapporto $\frac{\overline{F}}{q}$ non varia al variare di q.

Se poi, anziché considerare una singola carica sorgente Q, ne consideriamo n $(Q_1, Q_2 \dots Q_n)$ distribuite in modo qualsiasi nello spazio, possiamo asserire che, grazie al principio di sovrapposizione delle forze, la forza totale $\vec{F} = \vec{F_1} + \vec{F_2} + \dots + \vec{F_n}$ che agisce su una carica di prova q è proporzionale a q, quindi <u>anche in questo caso il rapporto</u> $\frac{\vec{F}}{q}$ è costante al variare di q (non dipende nemmeno dal suo segno).

Dunque, tenendo fisse le cariche sorgenti $Q_1, Q_2 \dots Q_n$ e variando il punto P dove è posta q, ci si rende facilmente conto, per quanto detto, che il rapporto $\frac{\overrightarrow{F}}{q}$ dipende solo

- dal punto P;
- dal valore e dalla posizione delle cariche $Q_1, Q_2 \dots Q_n$.

Possiamo allora definire una funzione che associa ad ogni punto P dello spazio il vettore $\frac{\overrightarrow{F}}{q}$ calcolato ponendo q nel punto P. Il

vettore $\frac{\overrightarrow{F}}{q}$ è chiamato **campo elettrico** nel punto P, solitamente è indicato con \overrightarrow{E} e si misura in N / C.

Ricapitolando, il vettore $\vec{E} = \frac{\vec{F}}{q}$

- non dipende dal valore di q né dal suo segno;
- dipende dal punto scelto P dove è posta q;
- dipende dal valore e dalla posizione di $Q_1, Q_2 \dots Q_n$;
- dipende dalle caratteristiche dell'eventuale materiale interposto fra le cariche.